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THERMAL CONDUCTIVITY OF FILLED POLYMER COMPOSITIONS 

E. P. Bel'skaya, V. M. Postnikov, 
B. M. Khusid, V. V. Mel'nichenko, 
and L. N. Novichenok 

UDC 536.223:541.182 

An equation for calculating the thermal conductivity of filled polymer composi- 
tions is derived and confirmed experimentally. 

In what follows, we examine the thermophysical properties of concentrated polymer solu- 
tions in hydrocarbon solvents, filled with metallic particles. In view of the high viscosity 
of a gel, sedimentation proceeds extremely slowly and the composition can be viewed as 
homogeneous and isotropic. If the volume concentration of the metal is high, the metallic 
particles form a branching network, encompassing practically the entire volume of the composi- 
tion. In this case, the dispersed system must be viewed as consisting of two interpenetrating 
components: the gel and the metal. The properties of such systems are examined in detail in 
[i]. 

For relatively small volume concentrations of metallic powder, the composition can be 
viewed as consisting of a binding medium (gel) with randomly positioned metallic inclusions 
[I]. The difference between the situations can be easily observed experimentally. In the 
first case, the coefficient of effective thermal conductivity of the composition depends on 
the thermal conductivity of the metal. In the second, in view of the fact that the coef- 
ficients of thermal conductivity of metals are several orders of magnitude greater than the 
coefficient of thermal conductivity of a gel, the effective thermal conductivity depends on 
the nature of the packing, i.e., on the volume content, dispersion, etc., but not on the 
nature of the metal. 

Quite often, the powder particles are covered by an oxide film, whose thermal conductiv- 
ity in most cases exceeds the thermal conductivity of the gel by 1.5-2 orders of magnitude. 
As calculations of the thermal conductivity of a dispersed system with coated spherical 
particles have shown [2], in this case, the screening action of the coating is not great and 
it can be neglected. In fluidlike polymer compositions, separate particles as well as floc- 
cules, consisting of several particles, can form isolated inclusions. This is due to 
aggregation processes, which occur for sufficiently high specific surface of the powder. 
Usually, chains consisting of several particles are formed with aggregation. 

In a number of works [3-5], the formation of elongated aggregates is explained by the 
fact that the potential barrier, which must be overcome by the particles in order to connect 
to an ellipsoid, is lower along the long axis of the ellipsoid than along the short axis. As 
is well known, with the formation of aggregates, aside from the change in the polydispersity 
of the inclusions, one other factor appears: the volume fraction of particles in the aggregate 
is greater than the average volume fraction of the dispersed phase. The effect of this factor 
on the dielectric permeability of the composition with spherical aggregates was analyzed in 
[6], where the aggregate was viewed as a system with a higher concentration of the dispersed 
phase. As shown in [6], this effect is significant only when the volume concentration of the 
dispersed phase exceeds 25%. For lower concentrations of the dispersed phase, the aggregate 
can be viewed approximately as a particle with a thermal conductivity of the order of the 
thermal conductivity of a metal. 
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Thus, in order to calculate the effective thermal conductivity of a fluidlike polymer 
composition with metallic packing, it is necessary to examine a homogeneous system with 
thermal conductivity %b, containing randomly oriented polydisperse inclusions with thermal 
conductivity %d; in addition %d >> lb. Calculations of the effective thermal conductivity 
of such systems for a wide range of volume concentrations (taking into account the pos- 
sibility for the formation of a continuous network) were carried out in [7.-9]. In these 
calculations, the real random system is replaced by an ordered system that models it, and the 
effective thermal conductivity of an elementary cell of the model system is calculated. 
There also exists a statistical approach to calculating the transport coefficients in dis- 
persed systems starting from the properties of the particles and the medium. The theoreti- 
cal and experimental studies of the effect of polydisperslty on the effective dielectric 
permeability and electrical conductivity of compositions are reviewed in [6], where a compre- 
hensive bibliography on this problem is presented. 

In the statistical approach, the effective coefficient of thermal conductivity of the 
composition is determined from the relations 

%~<V T) =%d<VTd> +%b<V~ ) '  
<V T) = (vTa> + < V ~ ) .  (1) 

Here, Tb and T d are the temperature fields in the binding medium and i n  the inclusions; the 
brackets indicate averaging with respect to volume. The temperature fields T b and T d are 
found from a solution of the stationary heat conduction equations (A is the Laplacian 
operator): 

AT d = AT b = 0 (2) 

with the conditions that the temperature and the heat flux are continuous on particle 
surfaces F 

~I~ = Ta[~; ~ V ~  .n = s (3) 

and with boundary conditions on the external surface of the composition. In order to trans- 
form relations (I) into a more convenient form, we will use the following equations for 
averaging the temperature gradients: 

1 ~ . f V T d d o =  1 ~Tdds ,  
< v T d  > = - - g -  . vi --V- . s~ 

< V ~  > = --g- , s v-Zvo, 
i 

where V is the volume of the composition; V el, volume containing only a single particle i; 
Sol, surface enclosing this volume; V i and Si, volume and surface of the i-th particle. The 
summation is carried out over all particles. With the help of these expressions, we obtain 
from (1)-(3) 

[r (VTD. ds) -- ~ds] 
~d 

--s ~ T~ds, ~b 
SO i S i 

(4) 
(%e--~) ( S vTbdv+X~ ~ d s ) :  - - ~ X ~  [~ ds-(vTbds)'r]" 

V__~Vo. i SOi i Sot 
i t 

If the volume content of particles is not large, then i n  calculating the integrals in 
(4) over the surfaces Sol, sufficiently far removed from the particles, it is possible to 
consider only the dipole expansion of the temperature field 

= - - G . r +  P~'! (5) 
r 3 

Here Pi is the dipole moment of the i-th inclusion, determined from Eqs. (2) and (3) with 
the boundary condition 

VTD~,~.~-- G. 
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In view of the linearity of the heat problem 
3 

P~ = vi Z ~kn-(i) G~lh, 
h , n = l  

(i) 
where ~kn is the symmetrical particle polarizability tensor [i0] and v i is its volume. 
S u b s t i t u t i n g  (5) and (6) i n t o  (4) and t ak ing  i n t o  account  the  random p a r t i c l e  o r i e n t a t i o n ,  
we obtain 

(6) 

N 

(Le-- ~b)/(~ ~- 2bo" = ~ (4~19)IjC~, (7) 
1=.1 

where the summation is carried out over the N types of inclusions; Cj is the volume concen- 
a 

Z -<J) is the first invariant of the tensor polarizability. tration of the inclusions; lj---- ~kh 
h=l 

As is well known, Ij > 0 for X d > %b and Ij < 0 for ~d < %b. In the case that %d >> ~b and 
Xd << %b, the quantity Ij does not depend on Id, but is determined only by the shape of the 
inclusion. For one form of inclusions, expression (7) reduces to a Maxwell type equation 

(%e-- ~b)/(~'-eq - 2ho) = kC,  k = 4n i /9 ,  (8) 

where the coefficient k takes into account the polydispersity of the particles. Equation 
(8) is valid also for systems containing inclusions of different shape, but with identical 
coefficients of thermal conductivity. However, in this case, the 1-averaged (over the 

N 

particles) invariant of the polarizability tensor is /=EP~Ij, where Pj is the fraction of 
/'=I 

particles with different shapes. For an elliposid, the polarizability tensor is presented 
in [i0]. Calculating its first invariant, we obtain 

3 
1 

k = -~ ~ (%d --  %~/(%b~- ()~d - -  ~OAn) ,  (9) 
n = l  

where A n is the depolarization factor. For spherical inclusions, 

A~ = 1/3, k = (~d - -  %0/(i~a q- 21~ 

and exp re s s ion  (8) goes over  i n t o  a well-known Maxwell equa t ion  f o r  a medium wi th  s p h e r i c a l  
p a r t i c l e s .  For (~d/~b -- 1)min A n >> 1 and min(1/An -- 1) >> ~d/~b, Eq. (9) i s  s i m p l i f i e d :  

] 3 

For ellipsoidal particles, Eq. (8) with coefficient (9) coincides with a similar formula 
for the dielectric permeability derived by Stepin Ill]. In [ill, the mutual effect of parti- 
cles is taken into account with the help of the Lorentz equation for interaction of pointlike 
induced dipoles, as was done by Odelevskii [12]. The derivation of Eq. (8), presented above, 
permits avoiding the contrast method used for calculating dispersed systemswith ellipsoidal 
particles by Pol'der, Van-Santen, and Fricke (these works and the inadequacies of the con- 
trast method are analyzed in [6]). In deriving Eq. (8), it is assumed that the centers of 
the inclusions are distributed uniformly over the composition and for this reason the form 
of the correlation function of the mutual positioning of the particles is not taken into 
account. Methods for calculating the effective characteristics of compositions (viscosity, 
thermal conductivity, etc.) taking into account the form of the Binary distribution function 
for inclusions (structure formation changes this function) were developed by Yu. A. Buevich 
and co-workers (in application to thermal conductivity see [13]). As numerical calculations 
carried out for spherical particles in [14] have shown, the effective thermal conductivity of 
the composition depends weakly on the form of the binary distribution function. At the same 
time, for the case that we are interested in, X d >> Xb for C ~ 0.15-0.20, the results of the 
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TABLE i. Values of the Coefficients k for Axisymmetric Ellip- 
soids (b = C) 

b/a 

0,1000 
0,1111 
0,1250 
0,1428 
0,1667 
0,2000 
0,2500 
0,3333 
0,5000 
1,00 
1,50 
2,00 
2,50 
3,00 
3,50 
4,00 
4,50 
5,00 
5,50 
6,00 
8,00 
10,00 
20,00 

A1 

0,0203 
0,0238 
0,0285 
0,0346 
0,0432 
0,0558 

kd/Xc=0 

--0,5490 
--0,5480 
--0,5465 
--0,5447 
--0,5422 
--0,5386 

Ld/Lc=O,1 

--0,4800 
--0,4589 
--0,4580 
--0,4568 
--0,4552 
--0,4530 

kd/kc=lO 

1,2153 
1,1944 
1,1681 
1,1368 
1,0970 
1,0467 

kd/kc= 

5,9272 
5,1238 
4,3561 
3,6717 
3,0365 
2,4619 

0,0754 
0,1087 
0,1735 
0,3333 
0,4459 
0,5272 
0,5881 
0,6354 
0,6730 
0,7036 
0,7290 
0,7505 
0,7688 
0,7846 
0,8308 
0,8608 
0,9262 

--0,5334 
--0,5256 
--0,5131 
--0,5000 
--0,5079 
--0,5260 
--0,5496 
--0,5765 
--0,6059 
--0,6358 
--0,6670 
'--0,6992 

--0,4498 
--0,4448 
--0,4369 
--0,4285 
--0,4334 
--0,4443 
--0,4579 
--0,4728 
--0,4884 
--0,5034 
--0,5186 
--0,5334 

0,9833 
0,9046 
0,8142 
0,7500 
0,7720 
0,8135 
0,8599 
0,9062 
0,9465 
0,9933 
1,0334 
1,0713 

--0,7318 
--0,7649 
--0,8994 
--1,0370 
--1,7363 

--0,5478 
--0,5816 
--0,6128 
--0,6572 
--0,8078 

1,1065 
1,1396 
1,2540 
1,3440 
1,6085 

1,9543 
1,5208 
1,1782 
1,0000 
1,0514 
1,1508 
1,2682 
1,3938 
1,5119 
1,6574 
1,7924 
1,9301 
2,0669 
2,2050 
2,7636 
3,3219 
6,1422 

calculations for different distribution functions (even neglecting the impenetrability of 
inclusions) practically coincide. 

In [15], starting from Fricke's equation [16] for the dispersed medium with ellipsoidal 
inclusions 

3 

%e__%b~ C 3 E Ld- -~b  _ [Lb( l _ A n ) + x e A n ] ,  

an empirical equation is proposed for taking into account the polydispersity of inclusions 

-- C, (ll) 
~+(n--l)~b k d + ( n - - 1 ) ~ b  

where n is an empirical coefficient that accounts for the polydispersity of the inclusions. 
The expression n = 3/~, *~<i, is usually used; n = 3 for a sphere. This equation has been 
quite widely used in the literature on the thermophysical properties of filled polymer media. 
An equation similar to (ii) is also used in the literature on the electrical conductivity of 
liquid dispersed systems [17]. The value of n (or *) for a given composition is calculated 
from Eq. (ii) from the experimental data. For Xd >> %b and %d << Xb, it follows from (ii) 
that 

C, Xd >> %b' 
%e-- %b : C (12) 

keq- (n-- 1) ke n--l' ~d << ~. 

Let us compare expressions (8) and (12) with Maxwell's equation for ld >> lb and Xd << %b: 

h e- kb 

ke@ 2% b 

C, kd ~ ~ 

C (13) 

As is evident from (8) and (13), polydispersity of inclusions increases the effective 
volume fraction of polydisperse particles by a factor k for X d << %b and by a factor 21k I 
for Xd << %b, compared with the same volume content of spherical particles. This result has 
a clear physical interpretation. In contrast to (8), Eqs. (12) relate the increase in the 
effective thermal conductivity of the composition with polydisperse particles to the thermal 
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TABLE 2. Results of Analysis of Experimental Data on the Ther- 
mal Conductivity of Polymer Compositions 

/ Shape of in- Size, c, % ~ ~" - ~  h 
Filler clusions gm ~ ~. 

I 
50andl51 10,0 o0~08 1,750 1,80520 0842 3,68 

194,; [241 Nonspherical ' 20,0 . .  2,625 [0:7311 4,55 
10,0 0,22 1,954~ ~ 12560,0673 4,35 
20,0 3000 4,545 10,7758 5,71 

[22],Copper ;94,~ Same 13 13,0 ),07{ 1,974 1,53530,1071 3,03 
24,5 20 2,632 10,6758 3,54 powder [24] 

[28],Industrial 629 Nonsgherical, 0.5-- 4,8 0,21 1:~8219 2,09710:076~' 4,29 
5,60 diamond [25] arbitrary --1.0 15,2 300 

1,4291,14330,15222,25 
[23], Crystallinequartz [2510'4' Irregular 11 21,410'3 0;21300 t,952 [05768!12,40 

[23],Corundum 28,5 Plat~ 6,9 8,0 1,619 2,09150'0688 ~ 4,29 
[251 17,(] 2,095 0:7718i .5,59 

7,2 1,476 0,0734 ! 4,06 
1,9051,84630,75355,09 1,8 11,6 2,857 

21 ,~ I 
0,7560,51820,899514,3 [16], Balsa wood ),04~ Discs 800• 14,C 0,220,677 

[25] 7200 25,s 300 I 
[16], Aluminum 207 Parallelepipeds 1600X 15,[ 1,986 I1,5887,0,1016'~ 3,17 

[ 25 ] 1600 • 0,6886 3,75 
4O0 

2,3750 0,05841 4,85 
Ii 2'165 I 10,8013 6,60 Cylindem 2700X 15,~ 

270 
] [11'452410'1171i0,653413,2'8223 5000 • 15, ~ 1,872 . 

1000 
Magnesium [-~j165 Milled Datain the )resent work l 0,1436 ~ 2,36 

1,2935 0,5989[ 2,60 
5 26830,0232! 9, 17 

i 

AluminUmpowder I [2511 207 Chains I '  10,91361 16,9 

Note. Upper values correspond to an elongated ellipsoid and 
lower values to a compressed ellipsoid. 

[21], Copper 
powder 

conductivity with the same content of inclusions, but with the effective thermal conductivity 
of the medium increased by a factor (n -- 1)/2, while for X d << %b, with an additional de- 
crease by a factor (n -- i)/2 of the effective filler volume. These results are physically 
incorrect. 

In the case of randomly oriented inclusions, their shape can be modeled by an effective 
axisymmetric ellipsoid. Determining the coefficient k in Eq. (8) from experimental data, it 
is possible to calculate the ratio of the semiaxes of this ellipsoid with the help of ex- 
pression (9). The depolarization factors for the ellipsoid are calculated from the equations 
in [I0]. Table 1 presents the values of the coefficient k for elongated and compressed el- 
liposids of revolution in two limiting cases: Id >> Xb and I d << I b . In [18], it was pro- 
posed that the ratio of the semiaxes of the equivalent axisymmetric ellipsoid be determined 
from the measured dielectric permeability of the dispersed system. A special investigation 
of the effect of the particle shape on the value of the polarizability coefficients is pre- 
sented in [17]. The relative increase in the resistance of a paralleleplped filled with an 
electrolyte with nonconducting axisymmetric particles immersed in it was measured. This per- 
mits calculating the quantity ~ along the particle axis perpendicular the to electrolyte, The 
experiments carried out showed that u is determined mainly not by the shape, but only by the 
ratio of the lengths of the particle axes. The results of the measurements agree well with 
the values of the polarizability coefficients calculated for the corresponding ellipsoids of 
revolution. 

We measured the thermal conductivity of hydrocarbon gels, thickened by polylsobutylene 
with different metallic powders, using a constant intensity probe method [19]. The experi- 
mental technique, taking into account the properties of polymer compositions (high viscosity, 
poor wettibility, slow structural formation processes, etc.), was perfected for pure gels 
with different content of polyisobutylene. After this was done, we carried out measurements 
for filled gels. A relative variant of this method, inwhich theheating rates of two identical 
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probes placed in the medium being studied and in a comparison-medium [20] are compared, was 
used. The following powders were used: milled magnesium; two fractions of a chipped form of 
magnesium and aluminum; four fractions of spherical aluminum and aluminum powder in flaked 
form. 

Analysis of the experimental data leads to the relation 

(%f/Zg-- l)/(~f/kg~- 2) = kC, (14) 

where %f/%g is the ratio of the coefficients of thermal conductivity of the filled and pure 
gel; C is the volume content of the metal. The values of the coefficients for magnesium and 
aluminum powders are given in Table 2. For the rest of the powders, the particles are nearly 
spherical and independent of the granulometric composition of the powders,k ~ i. 

The experimental data in [16, 21-23], where the effective thermal conductivities of 
rubbers filled with powders with nonspherically shaped particles were measured, were analyzed with 
the help of Eq. (8). The values of the thermal conductivities of the filler materials are taken 
from [24, 25]. The basic experimental data in [16, 21-23] and the values of k computed from 
them are presented in Table 2. As is evident from this table, for coarsely dispersed powders, 
k = 2. Starting from the values of the coefficients k, the parameters of the effective el- 
lipsoid are calculated. The results of the calculations for model fillers [12] show that the 
ratio of the semiaxes gives the correct information concerning the degree of polydispersity 
of the particles. 

Thus, the experimental investigation carried out confirms the validity of Eq. (8), pre- 
sented above, for the thermal conductivity of compositions with polydisperse particles for 
relatively low filler volume concentrations. The ratio of the semiaxes of the effective 
ellipsoid of revolution calculated from the experimental data gives a good qualitative 
characterization of the degree of polydispersity. 

LITERATURE CITED 

I. G. N. Dul'nev and Yu. P. Zarichnyak, Thermal Conductivities of Mixtures and Composite 
Materials [in Russian], Energiya, Moscow (1974). 

2. E. P. Bel'skaya, V. M. Postnikov, L. A. Vasil'ev, and B. M. Khusid, "Thermal conductivity 
" Vestsi Akad. Nauk BSSR, Ser. Fiz.-Energ of materials with dispersed coated fillers, 

Nauk, No. I, 91-95 (1981). 
3. G. K. Batchelor, "Progress in microhydrodynamics," in: Theoretical and Applied Mechanics 

[Russian translation], Mir, Moscow (1979), pp. 136-187. 
4. I. Lo Thomas and K. H. McKorkle, "Theory of oriented flotation," J. Colloid Interface 

Sci., 36, No. i, 110-118 (1971). 
5. E. B. Vadas, Ho L. Goldsmith, and S. G. Mason, "The microrheology of colloidal disper- 

sions," J. Colloid Interface Sci., 43, No. 3, 630-648 (1973). 
6. S. S. Dukhin and V. N. Shilov, Dielectric Phenomena and the Double Layer in Dispersed 

Systems and Polyelectrolytes [in Russian], Naukova Dumka, Kiev (1972). 
7. D. P. Volkov, Yu. P. Zarichnyak, and B. L. Mulatova,"Calculation of the thermal conduc- 

tivity of filled polymers," Mekh. Kompozitn. Mater., No. 5, 939-942 (1979). 
8. G. N. Dul'nev and V. V. Novikov, "Determination of the conductivity of filled hetero- 

geneous systems," Inzh.-Fiz. Zh., 37, No. 4, 657-661 (1979). 
9. G. I. Dui'nev and V. V. Novikov, "~onductivity of inhomogeneous media," Inzh.-Fiz. Zh., 

36, No. 5, 901-909 (1979). 
i0. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon (1960). 
Ii. L. D. Stepin, "Dielectric permeability of a medium with inhomogeneous ellipsoidal inclu- 

sions," Zh. Tekh. Fiz., 35, No. 6, 996-1001 (1965). 
12. V. I. Odelevskii, "Calculation of the generalized conductivity of heterogeneous systems. 

Matrix two-phase systems with nonelongated inclusions," Zh. Tekh. Fiz., 2_~i~ No. 6, 667- 
677 (1951). 

13. Yu. A. Buevich and Yu. A. Korneev, "Effective thermal conductivity of a dispersed medium 
with small Peclet numbers," Inzh.-Fiz. Zh., 31, No. 4, 607-612 (1976). 

14. B. S. Endler, "Effective viscosity and thermal conductivity of a dispersed medium," 
Inzh.-Fizo Zh., 37, No. i, 110-117 (1979). 

15. H. Fricke, "The Maxwell--Wagner dispersion in a suspension of ellipsoids," J. Phys. Chem., 
5-7, No. 9, 934-937 (1953). 

16. R. L. Hamilton and O. K. Crosser, "Thermal conductivity of heterogeneous two-component 
systems," Industr. Eng. Chem., Fundamentals, ~, No. 3, 187-197 (1962). 

997 



17. F. M. Rabinovich, Conductimetric Method of Dispersion Analysis [in Russian], Khimiya, 
Leningrad (1970). 

18. A. P. Altshuller,"The shapes of particles from dielectric constant studies of suspen- 
sions," J. Phys. Chem., 58, No. 7, 544-547 (1954). 

19. A. F. Chudnovskii, Thermophysical Characteristics of Dispersed Materials [in Russian], 
Fizmatgiz, Moscow (1962). 

20. L. N. Novichenok and Yu. M. Pikus, "Problem of comprehensive determination of the 
thermophysical characteristics using the probe method," Inzh.-Fiz. Zh., 29, No. 3, 432- 
435 (1975). 

21. F. F. T. Araujo and H. M. Rosenberg, "The thermal conductivity of epoxy-resin/metal- 
powder composite materials from 1.7 to 300~ '' J. Phys. D. Appl. Phys., ~, No. 4, 665- 
675 (1976). 

22. C. Schmidt, "Influence of Kapitza resistance on the thermal conductivity of filled 
epoxies," Cryogenics, 15, No. i, 17-20 (1975). 

23. W. Garrett and H. M. Rosenberg, "The thermal conductivity of epoxy-resin/powder composite 
materials," J. Phys. D. Appl. Phys., i, No. 9, 1247-1258 (1974). 

24. I. V. Kudryavtsev (ed.), Materials in Machine Construction [in Russian], Mashinostroenie, 
Moscow (1967). 

25. I. K. Kikoin (ed.), Tables of Physical Quantities [in Russian], Politizdat, Moscow (1976). 

THERMAL CONDUCTIVITY OF HYDROCARBONS IN THE NAPHTHENE GROUP 

UNDER HIGH PRESSURES 

B. A. Grigor'ev and A. M. Ishkhanov UDC 536.23 

The thermal conductivity of hydrocarbons in the naphthene group has been experi- 
mentally determined. An equation is now proposed for calculating the thermal 
conductivity over the given temperature and pressure ranges. 

The thermal conductivity of seven hydrocarbons in the naphthene group (cyclopentane, 
cyclohexane, ethyl cyclohexane, trans-l,2-dimethyl cyclohexane, cis-l,3-dimethyl cyclohexane, 
=rans-l,4-dimethyl cyclohexane, and cyclohexene) was measured by the method of coaxial 
cylinders at temperature from 20 to 180~ and under pressures from 0.i to 150 MPa. The 
construction of the test equipment and the measuring procedure have already been described 
[i]. The maximum error of a I determination was • 

The experimentally determined values of the thermal conductivity are given in Table I. 

Only a few published data are available on the thermal conductivity of hydrocarbons in 
the naphthene group. For cyclopentane, e.g., only one value of I and the magnitude of its 
derivative (~%/~t)p are given. A comparison of the data in [2] with the results of this 
study indicates that there the value of the thermal conductivity at 20~ is 2.5% higher and 
the value of the temperature coefficient at this temperatures+ (i/%2o)(dX/dt)p is 11.7% 
lower. 

The thermal conductivity of cyclohexane was studied by several authors, the results 
having been surveyed and analyzed in another report [3]. Its thermal conductivity under 
atmospheric pressure was studied most thoroughly by Filippov [4] and Mukhamedzyanov [5]. 
The value of ~3 o in [4] is 4.7% higher and the value of ~ is 25% lower than according to 
the data of this study. 

The values in [5] are consistently higher than those obtained in this study: 2.5% at 
20~ 5.1% on the average, and 7.0% maximum. The temperature coefficient ~ for cyclohexane 
in [5] is 30% higher. 

M. D. Millionshchikov Petroleum Institute, Groznyi. Translated from Inzhenerno-Fiziche- 
skii Zhurnal, Vol. 41, No. 3, pp. 491-499, September, 1981. Original article submitted June 
23, 1980. " 
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